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Dynamic features describing the collisions of the bound vector solitons and soliton complexes are investi-
gated for the coupled nonlinear Schrödinger �CNLS� equations, which model the propagation of the multimode
soliton pulses under some physical situations in nonlinear fiber optics. Equations of such type have also been
seen in water waves and plasmas. By the appropriate choices of the arbitrary parameters for the multisoliton
solutions derived through the Hirota bilinear method, the periodic structures along the propagation are classi-
fied according to the relative relations of the real wave numbers. Furthermore, parameters are shown to control
the intensity distributions and interaction patterns for the bound vector solitons and soliton complexes. Trans-
formations of the soliton types �shape changing with intensity redistribution� during the collisions of those
stationary structures with the regular one soliton are discussed, in which a class of inelastic properties is
involved. Discussions could be expected to be helpful in interpreting such structures in the multimode nonlin-
ear fiber optics and equally applied to other systems governed by the CNLS equations, e.g., the plasma physics
and Bose-Einstein condensates.
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I. INTRODUCTION

In such fields as fluids, plasmas, and fiber communication
systems, the nonlinear evolution equations �NLEEs�, with
their soliton solutions, appear as good models �1–4�.

The optical soliton used as the carrier of the information
bits is one of the robust subjects since it has the ability to
propagate over long distances without losing its identities,
which is a property due to the balance between the self-phase
modulation �SPM� and dispersion effects �1,5,6�. The basic
models describing the propagation of the picosecond pulses
�temporal solitons� in single-mode fibers are governed by the
nonlinear Schrödinger �NLS�-typed equations, including the
higher-order NLS equations for the femtosecond pulses
�1,4,7�, which are a typical type of the NLEEs. In order to
increase the transmission capacity of the lightwave systems,
it is necessary to consider the cases of the wavelength divi-
sion multiplexing �WDM� �8� and multichannel bit-parallel-
wavelength optical fiber networks �9�, where the pulses
propagate at least in two channels simultaneously �1,10�. In
those systems, the coupled NLS �CNLS� equations, which
model the propagation of the multimode soliton pulses, are
of current interest and extensively discussed �6,11–14�. In
fact, the use of massive WDM systems is enabled by the
fiber amplifiers and has led to the development of the light-
wave systems with the capacities exceeding 1 Tb/s �1�. Be-
sides, the CNLS equations arise in a variety of scientific
areas such as the biophysics, Bose-Einstein condensates
�BECs�, plasma physics, and two-wave systems in both shal-
low and deep waters �13–20�.

Different from the single NLS-typed equations, the CNLS
equations support the vector solitons, a composite structure

with two �or more� components �modes� that mutually self-
trap in a nonlinear medium �21�. Such concept was first sug-
gested in Ref. �22� as considering the orthogonally polarized
components in the nonlinear Kerr medium, where the SPM is
identical to the cross-phase modulation �XPM�. Those vector
structures have also appeared in the dynamics of two nonlin-
ear coupled waves �laser beams� in the plasmas �18,19�. The
collisions of the vector solitons have some unique features
and become one of the frequently investigated phenomena
�21,23�. Two different multimode solitons can be generated
from the collision process through the shape transformation
�13,21�, and associated with such transformation, one feature
is the energy exchange between the components of the col-
liding vector solitons with the intensity redistribution
�6,13,21,23,24�. Further studies demonstrate that the energy
redistribution can be efficiently controlled by an appropriate
choice of the initial physical conditions �23�. In those refer-
ences devoting to the shape transformation �energy redistri-
bution�, two categories of the methods have been used in
general: one being the numerical procedure based on the
split-step Fourier �SSF� method �23�, the other based on the
analytical solutions obtained with the Hirota bilinear method
�6,13,24�. As experimental supports, the collision behaviors
have also been observed in the birefringent fibers �25� and
photorefractive media �26�. With those properties, the colli-
sions of the vector solitons provide applications in the areas
of the collision-based logic gates and optical computation
�13,25,27�.

The regular vector multisolitons can separate before or
after collisions and propagate as the independent individuals
�6�. Specially, two adjacent vector solitons could form a
bound state, which confines the soliton motions in the sta-
tionary regions �21�. With more complex collision patterns,
such bound vector solitons have attracted much attention
�28–31�. In Ref. �28�, analytic and numerical studies of the
CNLS equations reveal the existence of a class of bound*Corresponding author; gaoyt@public.bta.net.cn
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vector solitary waves without interactions, which suggests
the possibility of reducing soliton interactions in the optical
fiber transmission systems. Correspondingly, for the CNLS
equations, a periodic rotation or beating of the polarization
state and a periodic coalescence between the two in-phase
�the relative phase is zero� polarization components of the
pulses have been observed through numerical simulations
�29�. As mentioned above, the collisions of the vector soli-
tons have certain unique features, which is not an exception
for those of the bound vector solitons �21,30,31�. Compared
with the scalar solitons governed by the single NLS equa-
tion, the existence of the stationary bound states for the dark-
type vector solitons in the isotropic Kerr-type media is a
novel phenomenon �30�, while another different feature em-
phasizes that the vector solitons in the two-vector-bound
states repel or attract each other, depending not only on their
relative phases but also on their initial position separation
�31�.

On the other hand, the multisoliton complex, viewed as a
localized superposition of the fundamental solitons, has been
studied for its sophisticated dynamic properties
�6,12,13,32–35�. Those fundamental solitons interact both
coherently and incoherently �32�, while the soliton complex
is able to show the variable profile and shape variation in the
moving and colliding process �13�. Some spatial soliton
structures can be attributed to the special cases of the multi-
soliton complexes, such as the incoherent soliton �32� and
partially coherent soliton �PCS� �12,13�. The experimental
research on the collision of the one-dimensional PCS in the
photorefractive crystal has been provided in Ref. �33�. Re-
cently, the analytic investigation of the CNLS equations with
the Hirota bilinear method indicates that some multisoliton
complexes �e.g., PCS� have close connections with the regu-
lar multisoliton solutions with respect to their collision pro-
cesses �6,13�. Under those circumstances, the variation in the
shape of the PCS has been explained as the result of the
intensity redistribution of the fundamental solitons during the
collision, and such interpretation offers an effective way to
understand the relevant phenomenon �6,13�. Furthermore,
the scenario of the energy redistribution may have potential
value to explain the shape changing of the bound vector
solitons or other complex structures.

Hereby investigated in this paper are the bound vector
solitons and soliton complexes for the following integrable
CNLS equations �6,11,12,14,24�:

iq1,z + q1,tt + 2���q1�2 + �q2�2�q1 = 0, �1a�

iq2,z + q2,tt + 2���q1�2 + �q2�2�q2 = 0, �1b�

where q1 and q2 are the slowly varying envelopes of the two
interacting optical modes, z and t represent the normalized
distance along the direction of the propagation and the re-
tarded time �Note that when the spatial solitons are dis-
cussed, t can be replaced by x, the transverse coordinate�,
and 2� gives the strength of the nonlinearity. Equations �1�
have been studied as the ones of the Manakov type with the
XPM coefficient equating one �11�. The NLEEs of such type
have also been investigated with respect to the modulational

instability of the coupled nonlinear waves in water waves
and plasmas �17–19�

With the aid of the Hirota bilinear method �36�, the ana-
lytic bright-bright multisolitons for Eqs. �1� have been de-
rived and investigated on the aforementioned shape transfor-
mation with the intensity redistribution �6,11–14,24�. Here
one of the advantages by using the Hirota bilinear method is
that it permits six arbitrary complex parameters to control the
amplitude, phase shift, pulse width, and relative separation
distance during the collisions of the regular vector solitons
�14,24,37�.

However, to our knowledge, the present interest on Eqs.
�1� has mainly been focused on the collisions of the regular
multisolitons derived explicitly from the Hirota bilinear
method �6,11,13,24� but ignoring its ability to provide more
complicated structures, e.g., the bound solitons and soliton
complexes. On the other hand, those stationary structures,
associated with their interactions, are usually discussed as
various independent individuals �12,13,29,30,33–35�, lack-
ing of the internal connections among them. Moreover, we
believe that it is necessary to investigate the following two
questions: �i� how the energy is redistributed in the collision
of those stationary structures; �ii� whether certain principles
for the shape changing of the regular multisolitons are ap-
propriate to explain the confined interaction patterns.

With above considerations, in Secs. II and III of this pa-
per, we will demonstrate the evolution from the periodic
bound vector solitons to a class of soliton complexes through
gradually changing the relative relations of the two real wave
numbers for the two-soliton solutions derived by the Hirota
bilinear method. Some of those complicated solitons can be
viewed as the new structures for Eqs. �1�. Numerical simu-
lations have also been performed to support the analytical
results. Section IV will ulteriorly discuss the intensity distri-
bution of the bound vector solitons and soliton complexes by
controlling the free parameters in the analytical solutions. In
Sec. V, we discover that during the collisions between those
stationary structures and the regular one soliton, there exist
two types of collision patterns in general: �i� the transforma-
tion among the basic types of those stationary structures ac-
cording to our classification; �ii� the increase or decrease in
the asymmetry for the stationary structures, but without the
transformation of the basic soliton patterns. In addition, sev-
eral inelastic properties will be referred in each section,
which can benefit the understanding of the existed phenom-
ena in the nonlinear fiber optics and plasma physics or pro-
vide relevant applications in those fields.

II. INTEGRALS OF MOTION AND BILINEAR FORMS

Two integrals of motion for Eqs. �1�, the energy E and the
linear momentum M of the pulses, are given by Ref. �10� as

E = �
−�

�

��q1�2 + �q2�2�dt , �2�

M = i�
−�

�

�q1
�q1,t − q1q1,t

� + q2
�q2,t − q2q2,t

� �dt , �3�

where � denotes the complex conjugate. Equation �2� implies
the conservation of the total energy for the two modes. Such
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conservation is a general principle in both situations includ-
ing the intensity redistribution �enhancement and suppres-
sion� in each single mode and the energy switching between
the two modes.

The explicit expressions of the bight-bright vector soli-
tons for Eqs. �1� have been obtained by the Hirota bilinear
method �11,13,24,37�. By using the transformations

q1 =
g

f
, q2 =

h

f
, �4�

the bilinear form of Eqs. �1� can be derived as

�iDz + Dt
2�g · f = 0, �iDz + Dt

2�h · f = 0,

Dt
2f · f = 2��gg� + hh�� , �5�

where f�z , t� is a real function, g�z , t� and h�z , t� are complex
functions, and the Hirota’s bilinear operators are defined by
�36�

Dz
nDt

ma · b = � �

�z
−

�

�z�
�n� �

�t
−

�

�t�
�m

a�z,t�b�z�,t���z=z�,t=t�.

�6�

By applying the method of the formal parameter expansion,
the two-soliton solutions can be obtained as �24�

qj =
�1

�j�e�1 + �2
�j�e�2 + e�1+�1

�+�2+�1j + e�1+�2+�2
�+�2j

1 + e�1+�1
�+R1 + e�1+�2

�+�0 + e�1
�+�2+�0

�

+ e�2+�2
�+R2 + e�1+�1

�+�2+�2
�+R3

, j = 1,2, �7�

where

� j = kj�t + ikjz� ,

e�0 =
�12

k1 + k2
� , eR1 =

�11

k1 + k1
� , eR2 =

�22

k2 + k2
� ,

e�1j =
�k1 − k2���1

�j��21 − �2
�j��11�

�k1 + k1
���k1

� + k2�
,

e�2j =
�k2 − k1���2

�j��12 − �1
�j��22�

�k2 + k2
���k1 + k2

��
, �8a�

eR3 =
�k1 − k2�2

�k1 + k1
���k2 + k2

���k1 + k2
��2

��11�22 − �12�21� , �8b�

� jl =
��� j

�1��l
�1�� + � j

�2��l
�2���

kj + kl
� , j,l = 1,2. �8c�

Solution �7� is characterized by six arbitrary complex param-
eters including the wave numbers k1, k2 and four parameters
�1

�j�, �2
�j�, j=1,2. For the two modes of both regular solitons

during collision, the special case �1
�1� /�2

�1�=�1
�2� /�2

�2� does
give the standard elastic collision; otherwise, the inelastic
collision occurs �13�. If the two wave numbers are confined
to be some selected real numbers, the collision structures that
differ from the regular two-soliton solutions, i.e., the bound
vector solitons as well as the soliton complexes, can be de-
rived from those explicit algebraic expressions. The details
will be presented in the following sections.

III. BASIC BOUND VECTOR SOLITONS AND SOLITON
COMPLEXES WITH BRIEF NUMERICAL

SIMULATIONS

Without loss of generality, we assume that �=1,
�1

�j�=�2
�j�=1, j=1,2, and focus on the relationship between

the real wave numbers k1 and k2. Under such assumptions,
Solution �7� can be rewritten through symbolic computation
�2–4� as

qj =
e�1Q1 + e�2Q2

2Dk1
2k2

2�k1 + k2�2 , j = 1,2, �9�

where

Q1 = k1
2�e2k2t�k1 − k2�2 + 2k2

2�k1 + k2�2� , �10a�

Q2 = k2
2�e2k1t�k1 − k2�2 + 2k1

2�k1 + k2�2� , �10b�

D = 1 +
e2k1t

2k1
2 +

e2k2t

2k2
2 +

e2�k1+k2�t�k1 − k2�4

4k1
2k2

2�k1 + k2�4

+
4e�k1+k2�t cos��k1

2 − k2
2�z�

�k1 + k2�2 . �10c�

The intensity of qj can be explicitly expressed as

�qj�2 =
e2k1tQ1

2 + e2k2tQ2
2 + 2e�k1+k2�tQ1Q2 cos��k1

2 − k2
2�z�

4k1
4k2

4�k1 + k2�4D2 .

�11�

With those considerations, the soliton pulses in the two
modes have the identical intensity, which hold the periodic
behaviors with the period T=2� / �k1

2−k2
2� along the propaga-

tion distance. The investigation on the intensities of the
pulses can be carried out for a series of values of k1 and k2 by
dividing them into several groups of conditions.
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A. k1=1 and 0�k2	1

Under such choices of the real wave numbers, the two-
soliton solutions evolve into certain periodic bound vector
solitons. Those structures are sensitive to the degree that k2
approaches to k1. When k1=k2=1, the vector solitons degen-
erate to the one-soliton solutions; however, if the case of the
narrow-banded wave numbers is considered, i.e., k2	1, they
exhibit the stationary vector-soliton structures with the peri-
odic attraction and repulsion.

1. k2=0.95 and k2=0.99

As we know, the Kerr solitons interact like real particles,
exerting attraction and repulsion on one another �21�. For
two equivalent Kerr solitons on initially parallel trajectories,
they attract each other in the in-phase case such that they
collide periodically along the fiber length �1,21�. In our dis-
cussions, the periodic attraction and repulsion for the bound
vector solitons exist visibly near the range of k2=0.8	1.0
�not including 1.0�. Figures 1�a� and 1�b� illustrate the inten-
sity maps of mode q1 �mode q2 has the same form� for k2
=0.95 and k2=0.99. In the case of k2=0.95, the maximum
separation distance between the peaks of two pulses
�corresponding to the solid line in Fig. 1�c�� is 
dmax=8.95
at z=nT �n=0, �1, �2, . . .�, while the minimum
distance �dashed line� is 
dmin=3.96 at z= �1 /2+n�T
�n=0, �1, �2, . . .�. During the attraction process, the en-
ergy is transformed from the right pulse to the left one �see
Fig. 1�c�� without energy lost for the existence of the integral
quantity �2�. The asymmetry of the pulse interaction is pos-
sibly generated by the slight difference between the two ini-
tial pulses at z=0. Comparing with the case of k2=0.95,
k2=0.99 results in both increase of 
dmax and 
dmin, namely,
12.03 and 4.59. At the same time, the period has enhanced
3.9 times �from 64.44 to 315.74�. Such growth in 
dmax,

dmin, and T indicates the corresponding decrease in the
strength of the force between the two pulses in the bound
state.

2. k2=0.5

When k2 varies in the range of approximate 0.2	0.8, the
initial two pulses gradually form a stationary soliton com-

plex structure. In such case, parts of the two-soliton pulses
are made coherent and the structure behaves as a whole,
which is analogical to the PCS �6,13,38�. It can be calculated
that the soliton complex with k2 close to 0.8 �e.g., k2=0.7�
has the similar dynamic properties to the one discussed in the
last section for its weak coherence. When k2=0.5, the soliton
complex provides a symmetry initial pulse at z=0 �see Figs.
2�a� and 2�b�� and undergoes an enhancement with two
peaks merging into one in a cycle and, spontaneously, the
width of the pulse is compressed greatly. The degree of the
coherence is increasing with k2 decreasing �the overlapping
of the two basic pulses is enhancing� and the two-peak struc-
ture gradually vanishes; however, a completely single struc-
ture has not shaped yet �an example can be seen in Fig. 2�c��.
As k2 approaches to zero, the soliton complex develops to
the one-soliton-like structure with intensity periodically en-
hanced and suppressed.

We point out that those structures provide the features of
the extraordinary high intensities �or saying high power�.
Taking Figs. 2�b� and 2�c�, for example, the amplitude am-
plifications at half of the cycle can be considerably remark-
able �the third times greater than the amplitudes at z=0�;
meanwhile, the amplification happens on a shorter scale in z
with k2 decreasing in the range of 0.2	0.8. In fact, the soli-
ton complexes in Fig. 2 can be interpreted as the nonlinear
superpositions of two one-soliton solutions and the large am-
plitudes are induced by the interactions of the basic waves.
As the nonlinear amplification greatly improves the intensity
of the input pulse in such a situation, it is expected that real
applications would be possible in the relevant physical sys-
tems, especially for the optical fibers and experiments in
BECs.

3. k2=0.15

A breatherlike �39� soliton complex with the periodic os-
cillation �alternate compression and expansion� arises when
k2 approaches to zero, strictly speaking, within the range of
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FIG. 1. �Color online� �a� Intensity plots of the bound vector
solitons via Eq. �11� for k2=0.95; �b� intensity plots of the bound
vector solitons via Eq. �11� for k2=0.99; �c� for k2=0.95, the inten-
sity profile of pulse at z=0 �solid line� and z=32.2 �dashed line�.
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FIG. 2. �Color online� �a� Intensity plots of the soliton complex
via Eq. �11� for k2=0.5; �b� for k2=0.5, the intensity profile of pulse
at z=0 �solid line� and at z=4.19 �dashed line�; �c� for k2=0.36, the
intensity profile of pulse at z=0 �solid line� and at z=3.61 �dashed
line�.
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approximate 0	0.2 �k2=0 corresponds to the complete one-
soliton solution�. The amplitudes and widths of both compo-
nents change in a cycle, while the period T varies not much
for three groups of k2 �see Fig. 3�c��, namely, 6.30, 6.35, and
6.43. The maximum decrease in the full width at half maxi-
mum �FWHM� in one cycle can be used to describe the
compression degree for the pulse. For instance, when
k2=0.15 �see Figs. 3�a� and 3�b��, the FWHM of the intensity
profile at z=0 �solid line� is 1.99, while the one at
z=T /2=3.21 �dashed line� is 1.59, so the decrease is

dFWHM=0.40. Also 
dFWHM for k2=0.10 and k2=0.05 are
0.18 and 0.04, and the absolute values of the FWHM at
z=0 vary not much �1.86 for k2=0.10 and 1.78 for k2=0.05�,
which implies that the degrees of the compression and ex-
pansion for the soliton complex pulses in one cycle are
weakening with k2 approaching to zero.

4. Brief numerical simulations of the basic bound vector
solitons and soliton complexes

The above three sorts of structures are discussed by virtue
of the analytical solutions obtained with the Hirota bilinear
method. In this part, numerical simulations are performed to
support the results. For Eqs. �1�, we use the SSF method �1�
to carry out the numerical simulations with the initial vector
pulses qj, j=1,2, at z=0 �the simulation is proceeded in the
MATLAB software environment�. Figure 4 presents the nu-
merical results for the above-discussed situations, namely,
for k2=0.95, 0.5 and 0.15. The computational domain for t
is chosen as �−25,25� and 500 grid points are used. The
propagation distance is taken as 250 with a step size of 0.05.
In the case of k2=0.95, the pulse propagates in half a cycle
consistently with the analytic one �see Fig. 4�a��, and in the
second cycle the two pulses in the bound state are not able to
achieve the minimum separation distance. During the second
half of the third cycle, the energy is dispersed gradually from
the bound state, and the two pulses depart from each other
after approximately z�160, which is triggered by the nu-

merical errors. When k2=0.5 �see Fig. 4�b��, the energy of
the soliton complex begins to disperse after approximate 11.5
cycles. Regarding k2=0.15, Fig. 4�c� illustrates that the
breatherlike structure propagates stably for the whole dis-
tance. Further simulations imply that for the given step size
along z direction, the initial pulse with k2 approaching to
zero �i.e., the soliton complex with more compact structure�
can propagate for a longer distance. One can consider that
the multiple bound solitons with the minimum distance be-
tween the separated centers of the solitons are most stable,
and the situations from Figs. 4�a�–4�c� indeed show the in-
creasingly strengthened bound states with similarity. If more
grid points are used in the numerical simulations for the
distance z �step size decreasing to 0.01�, the propagations of
the pulses for above three typical values of k2 accord with
the analytic ones completely within the distance of 250,
which indicates the stabilities of those structures.

B. k1=1 and −1�k2�0

The transition of k2 from positive to negative values
brings some new features for the pulse propagations. When
k2 varies in the range of −0.2	0, the situations are similar to
that for the range of 0	0.2 and the single pulse exhibits
periodic compression and expansion. As k2 gradually enters
into the range of −0.8	−0.2, we observe that a part of en-
ergy existing as a weakly periodic pulse splits from the
single one.

Figures 5�a� and 5�b� describe the pulse propagation when
k2=−0.5, from which we notice that a part of pulse with
almost no oscillation has been split from the periodic one.
The relative enhancement of the amplitude for the left part
�see Fig. 5�b�� in a cycle has nonmonotone variation with k2
in the range of −0.8	−0.2. To clarify this issue, we denote
the largest amplitude of the oscillating part �i.e., the left part
in Fig. 5�b�� as �q1�c,max

2 at half of the cycle �dashed line� and
the minimum amplitude of that as �q1�e,min

2 �solid line�. For a
given k2, = ��q1�c,max

2 − �q1�e,min
2 � / �q1�e,min

2 can be used to de-
scribe the relative enhancement of the amplitude of the os-
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FIG. 3. �Color online� �a� Intensity plots of the soliton complex
via Eq. �11� for k2=0.15; �b� for k2=0.15, the intensity profile of
pulse at z=0 �solid line� and at z=3.21 �dashed line�; �c� intensity
profiles of the soliton complexes at t=0 for k2=0.05 �solid line�,
0.10 �bold dashed line�, and 0.15 �dashed line�, respectively.
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cillating part in one cycle. Figure 5�c� presents the variation
of  with k2, which indicates that the process consists of two
monotone increasing and decreasing phases. When
k2	−0.38,  reaches to the maximum value 	0.57, i.e., the
maximum amplitude in one cycle exceeds 1.5 times of the
initial one. Another feature is that  approaches to zero when
k2 approaches to −1 �corresponding to the range of
−0.8	−1� and such k2 provides the two parallel peaks
propagating with almost no periodic oscillations �or can be
neglected relatively�. It is known that in a parallel polarized
soliton transmission system, the maximum transmission dis-
tance is influenced by the distance of soliton coalescence
�40�, so the structure with k2 approaching to −1 might offer a
two-peak pulse suitably for the long-distance transmission.

C. k1=1 and k2�−1 or k2�1

When k2�−1 or k2�1, the similar discussions can be
addressed, which exhibit the periodic variations in the inten-
sity �q1�2 more sharply than that in Secs. III A and III B. The
range of approximate 1	1.25 for k2 corresponds to the
bound vector solitons, while 1.25	3.6 and k2�3.6 corre-
spond to the analogous soliton complexes in Figs. 2 and 3,
respectively. �Note that the structures vary continuously with
k2 increasing, so there are no remarkable critical values to
divide the range of k2 into absolutely distinct regions.�
Within the range of −1.25	−1 for k2, the situation is just
similar to that for −1	−0.8 and the soliton complex struc-
ture for −1.5	−1.25 can be described in the approximate
way for −0.8	−0.2.

As k2 varies in the range of −3	−1.5, the two peaks are
gradually emerging into one structure. Especially for k2 ap-
proaching to −1.5, a part of energy is separated from the
single one with periodic variation, which is different from
the pulse discussed in Sec. III B. Ulteriorly, the pulse similar
to the one in Fig. 3, with greater compression and expansion
in one cycle, can be derived when k2�−3 approximately.
Such large-scope oscillation of the pulse is mainly resulted
by the larger deviation of the absolute values of k1 and k2.

IV. INTENSITY DISTRIBUTIONS OF THE BOUND
VECTOR SOLITONS AND SOLITON COMPLEXES IN

TWO MODES

For the regular multisolitons of Eqs. �1� �the relative dis-
tance between each two single solitons approaches to infinity
when z→ ���, the soliton collisions with the shape chang-
ing permit different possibilities of energy redistributions
among the different modes of solitons �6,11,13,24�. The free
parameters �1

�j�, �2
�j�, j=1,2, in Solutions �7� and �8� have

direct connections with the collision patterns. For example,
�1

�1� /�2
�1�=�1

�2� /�2
�2� gives the elastic collision, while types of

inelastic cases �associated with the enhancement and sup-
pression of the pulses� occur for other choices of those pa-
rameters. In this section, several cases of the bound vector
solitons and soliton complexes with different intensity distri-
butions have been provided and interpreted.

A. Intensity distributions of the bound vector solitons

Figures 6�a� and 6�b� show two asymmetric cases for the
bound vector-soliton interactions with the different choices
of parameters in the analytical solutions �7� and �8�. The first
case �see Fig. 6�a�� is a periodical enhancement of the inten-
sity of the right soliton in mode q1 and suppression of the
corresponding soliton in mode q2 in a cycle, while the left
one in both modes has undergone the opposite process. Dif-
ferently, in the other case �see Fig. 6�b��, the enhancement in
one cycle occurs in the right soliton for both modes. From
the view of energy switching, most of the total energy in Fig.
6�a� is distributed in the right soliton of mode q1 and the left
soliton of mode q2 nearly equally, and the total energy of the
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individual solitons �the right and left ones� in two modes
remains approximately equal. As comparison, Fig. 6�b� al-
lows the energy to distribute mainly in one mode �mode q1�.
For a cycle in both modes, the energy is concentrated in one
soliton �the right one� during the attraction process. Such
different behaviors are connected with the parameters �1

�j�,
�2

�j�, j=1,2, which have the abilities to control the intensity
distributions of both solitons in the bound state for each
single mode exactly.

B. Intensity switching of the soliton pulses

As we know, in the case of the two-mode �two-core� fi-
bers with the anomalous group-velocity dispersion, the entire
soliton pulse can switch from one mode to another, and such
nonlinear switching behaviors have been applied in the ul-
trafast logic gates using asymmetric fiber couplers �41�. Fig-
ure 6�c� has provided two parallel soliton pulses with the
energy switching properties. In such case, the left and right
pulses, respectively, switch between the two modes com-
pletely with the period T=64.44, and such period can be
controlled by the appropriate choices of k1 and k2. Further,
the total energy can be distributed in asymmetric manners for
either of the pulses if the parameters �1

�j�, �2
�j�, j=1,2 are

well selected. One point associated with the integrity of Eqs.
�1� is the invariation in the total energy E for the system
despite of various possibilities of the intensity distributions.

C. Soliton complexes without periodic interactions

If some of �1
�j�, �2

�j�, j=1,2 are supposed to be zero, a type
of soliton complexes can be derived, which have the analo-
gous shapes with the PCS discussed in Refs. �12,32–34�.
Figures 7�a� and 7�b� illustrate the soliton complex structures
in two modes, in which the coherence is found different be-
tween mode q1 and q2. The overlapping of the two humps in
mode q2 is more visible than that in mode q1. When the
value of k2 decreases, more proportion of the total energy is
concentrated in mode q2, and the two-hump soliton complex

gradually evolves into a single soliton with the intensity en-
hanced �the sketch map of evolution can be seen in Fig.
7�c��. The one in the remaining mode is suppressed corre-
spondingly, with the two-hump structure still obviously vis-
ible. If k2 approaches to zero, almost all energy has switched
to mode q2, forming a one-soliton-like structure; synchro-
nously, the profile of intensity nearly vanishes in mode q1.

V. COLLISION-INDUCED SHAPE TRANSFORMATIONS
OF THE BOUND VECTOR SOLITONS AND

SOLITON COMPLEXES

A series of studies have shown that collisions allow the
profiles of certain PCS to remain stationary but cause their
shapes to change �12,33–35�. In this section, several interest-
ing collision behaviors of the bound vector solitons and soli-
ton complexes will be investigated by choosing the appropri-
ate parameters for the three bright solitons of Eqs. �1�. The
features of those collisions originate from the shape transfor-
mations associated with the intensity redistributions but have
more sophisticated presentations.

The analytical three-soliton solutions of Eqs. �1� by the
bilinearization procedure have been given in Refs. �13,24�,
which are not presented here for their trivial details. The
complexity of the three-soliton solutions is characterized by
12 complex parameters �1

�j�, �2
�j�, �3

�j�, j=1,2 ,3, k1, k2, and
k3. The three wave numbers can be further written as
kj =kjR+ ikjI , j=1,2 ,3, where the suffixes R and I represent
the real and imaginary parts, respectively. In Sec. III, the
typical bound vector solitons and soliton complexes propa-
gating parallel to z have been investigated by the choice of
kjI=0. In fact, if we set �kjI�� �kjR�, the propagations of the
pulses unparallel to z can be derived and such structures are
liable for constructing corresponding collisions with one
bright soliton, which attract our interest in the following
contents.

A. Collisions of the bound vector solitons
and one bright soliton

To the PCS understood as the multisoliton complex, one
feature is the reshaping of the soliton with an intensity pro-
file different from the initial one �12,33�. Likewise, Fig. 8
has exhibited the collision-induced shape changing with the
intensity redistribution for the bound vector solitons in the
two modes. The corresponding parameters for the analytical
three-soliton solutions have been given in the captions. In
Fig. 8�a�, the regular one soliton gets suppressed and the
energy is transformed into the asymmetric bound vector soli-
tons during the collision, which induces the formation of the
parallel soliton pulses with intensity switching in mode q1.
The situation in its coupled mode q2 is another image, which
shows that the bound vector soliton with the opposite sym-
metry splits part of its energy to the one soliton and changes
into the similar intensity-switching pulses, while the corre-
sponding one soliton is enhanced. To those cases, we can
also say that the collision leads to the transformation be-
tween the basic patterns studied in Figs. 6�a� and 6�c�. Such
transformation requires the extra energy input and output,
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respectively, in modes q1 and q2, which are achieved through
the suppression and enhancement of the regular one soliton.

Figure 8�b� provides us with the collision, in which the
energy redistribution leads to the increase in the asymmetry
for the bound vector solitons. For mode q1, the regular one
soliton completely merges into the bound state, inducing the
obvious enhancement of the intensity profile of the right
pulse in the bound state, but without transformation of the
basic patterns happening in Fig. 8�a�. For mode q2, the en-
ergy of the right pulse of the bound vector solitons is taken
away by the regular one soliton during collision, leaving
only the left one propagating periodically. The enhancing
and vanishing both occur to the right pulse for the reason of
the slight difference between the real parts of the wave num-
bers k1 and k2.

The first map in Fig. 8�c� illustrates the transformation
from the one soliton and breatherlike soliton complex to the
bound vector solitons in mode q1. In mode q2 �see the second
map�, the two pulses in the bound state are close to the
structure in Fig. 7�a�, with weakly periodic compression and
expansion. When it collides with the regular one soliton, part
of its energy is given to the one soliton, inducing correspond-
ing enhancement for the latter one, and the rest forms a typi-
cal bound vector solitons.

The above examples tell us that for the collisions of the
bound vector solitons comparing with those of the regular
three solitons, not only the enhancement and suppression of
the intensity profiles �which may lead to the increase in the
asymmetry of the pulses in the bound state�, but also the

transformations of the basic soliton patterns happen due to
the shape changing with the intensity redistribution.

B. Collisions of the soliton complexes and one bright soliton

In this part, our interest will be devoted to the collisions
of the basic soliton complexes discussed in Figs. 3 and 7. As
interpreted previously, the analysis is based on the analytical
three-soliton solutions. Figure 9�a� shows the collision be-
tween the breatherlike soliton complex and regular one soli-
ton in the two modes, in which the two structures are well
separated before and after collision. In mode q1, the soliton
complex gets enhanced in its amplitude, while the regular
one soliton is suppressed after collision. Interestingly, the
different changes are observed in mode q2, where the soliton
complex gets suppressed and the one soliton is enhanced.
The scenario of the intensity redistributions is similar to that
for the collision of the regular two solitons in the Manakov
system �6,27�. Specially, for the case of � j

�1�=� j
�2�=� j

�3�=1,
j=1,2 ,3, the elastic collision between the soliton complex
and regular one soliton occurs without shape changing. An-
other attractive phenomenon in the finite collision region is
that the breatherlike soliton complex induces the one soliton
to exhibit oscillation in shape for several cycles, and such
effect disappears gradually with the separation distance in-
creasing. Reference �27� has mentioned the concept control-
ling the switching dynamics, referring to the suppression and
enhancement of the periodic oscillations in the energy
switching process completely or partially. Their way is to use
the collision between two oscillations. Here the enhancement
and compression of the breatherlike soliton complexes in
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Figs. 9�a� and 9�b�, respectively, can also be controlled by
appropriately choosing the parameters, and such controls are
mainly partial in the present study. Further, our way is based
on the collision between the breatherlike soliton complex
and regular one soliton as difference.

The two incoherent humps of the soliton complex can
merge into one hump, forming a regular one soliton in mode
q1 through collision, which is shown in Fig. 9�b�. Corre-
spondingly in its coupled mode q2, the mergence occurs be-
tween the one soliton and breatherlike soliton, leading to the
formation of the one soliton with enhanced amplitude. In
other words, the breatherlike soliton is completely sup-
pressed during the interaction. Mergence is not the only pat-
tern that such soliton complex undergoes during collision;
the formation of the bound vector solitons after collision is
shown in Fig. 9�c� as another image. In such a condition,
unlike the automergence in mode q2 shown in Fig. 9�b�, the
formation of the bound vector solitons in the same mode in
Fig. 9�c� is induced by the collision with the regular one
soliton.

The above descriptions of the collisions of the bound vec-
tor solitons or soliton complexes demonstrate some unique
shape-changing phenomena associated with the intensity re-
distributions comparing with those for the regular multisoli-
tons. Since 12 free complex parameters are provided in the
explicit three-soliton solutions, more collision behaviors with
interpretations can be derived by controlling those param-
eters, which will be treated in a future publication.

VI. CONCLUSIONS

In this paper, we have studied the bound vector solitons
and soliton complexes for Eqs. �1� by the different choices of
the arbitrary parameters for the multisoliton solutions. Shape
transformation with energy redistribution for the regular vec-
tor multisolitons has been employed to explain the corre-
sponding phenomena for those stationary structures illus-
trated in Figs. 1–9. Results have been both supported by the
analytical solutions obtained with the Hirota bilinear method
�36� and numerical procedure with the SSF method �1�.

In the classification of various stationary structures, two
categories of energy transformation patterns during soliton
interactions have been exhibited �see Figs. 1–4�, namely, the
periodic transformation between the two pulses and self-
oscillation �compression and expansion for one pulse�. For-
mation of the stationary structures with different coherence
has close relationship with the separation distance between
the initial two pulses at the propagation distance z=0. For
the case of periodic attraction and repulsion �see Fig. 1�, the
interaction period along the propagation distance increases
with the separation distance increasing �or with the two wave
numbers approaching to each other�. In the parallel soliton
transmission system, such feature could be used to avoid the
interference caused by the collision when the interaction dis-
tance in one period is controlled to be longer than the trans-
mission distance. With the coherence of the two pulses en-
hanced, the energy can be confined in a small region within

a cycle, which induces the appearance of the extraordinary
high intensity �see Fig. 2�. Self-oscillation occurs as the two
wave numbers deviating from each other �see Fig. 3�. If one
wave number approaches to zero, the oscillation becomes
very weak �see Fig. 3�c��, which provides a path to suppress
the interaction with very strong coherence. Numerical simu-
lations have revealed that the two-soliton pulses with stron-
ger coherence can propagate more stably, as seen in Fig. 4.
On the other hand, those discussions have revealed a fact that
the basic interaction patterns can be controlled by the initial
conditions of the two pulses at z=0, which is similar to that
presented in the introduction for the regular vector solitons.

Our investigations have exactly indicated that the total
energy can be distributed asymmetrically between the indi-
vidual pulses in the bound state for the same mode �see Fig.
6�a�� or between the single modes �see Fig. 6�b��. For the
former case, the interaction in each single mode happens
closely to the pulse with the higher intensity of the two dur-
ing a period. For the latter case, there exists the similarity
between the interactions in both modes despite the unequal
energy distribution for each single mode.

Other features we can derive involve the two parallel soli-
ton pulses with the periodic energy switching between the
two modes �see Fig. 6�c�� and overlapped two-hump soliton
complexes without the periodic interactions �see Fig. 7�. The
former can be viewed as the complicated condition for the
case of the single pulse. The latter provides us with the co-
herent structure in which the periodic interaction between the
two humps is completely suppressed. Generally speaking,
the generation of those two structures is attributed to the
choice of the negative or zero values for the parameters �1

�j�,
�2

�j�, j=1,2, partially.
Collision-induced shape changing of the bound vector

solitons and soliton complexes has been investigated in this
paper. Some of the structures discussed above can be
changed when they collide with the regular one soliton.
Moreover, with the regular one soliton suppressed �en-
hanced� during the collisions, the energy input �output� into
the bound vector solitons may induce the following two ef-
fects depending on the parameters: �i� the asymmetric in-
crease or decrease in the pulses in the bound state for each
mode �see Fig. 8�b��; �ii� the transformation of the basic
soliton patterns according to the classifications in Sec. III
�see Figs. 8�a�, 8�c�, 9�b�, and 9�c��. Those behaviors have
direct connections with the shape changing �intensity redis-
tribution� of the three-soliton collisions. In other words, both
effects depend on how the energy is redistributed between
the one soliton and stationary structure during the collision
process.

Additionally, the result has been exactly obtained that the
scenario of the intensity redistributions for the regular mul-
tisolitons in the Manakov system �27� can be applied to en-
hance or suppress the breatherlike soliton complex partially
�see Fig. 9�a��. Such breatherlike soliton complex is strongly
coherent so as to make it behave like a single soliton during
the collision. Therefore, another route has been supplied to
suppress the oscillation for the breatherlike soliton complex
by taking its energy away during the collision. Also, the
collision-induced transformation of the overlapped two-
hump soliton complex into the one soliton or into the bound
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state has been studied simultaneously. Essence of the trans-
formation can be concluded as the effect of energy redistri-
bution as mentioned above.

In conclusion, the two questions mentioned in the intro-
duction have been solved to some extent. Energy redistribu-
tion has been investigated and such behavior for the funda-
mental solitons can be used to explain the interaction of the
stationary structures. Those discussions could be expected to
be helpful in describing the pulse propagations and providing
the relevant applications in the multimode nonlinear fiber
optics and BECs. As another aspect, the bound vector soli-
tons and soliton complexes in the nonlinear fiber optics give
the simplified and analogous pictures of the corresponding
structures in other systems governed by the CNLS equations,
e.g., the dynamics of coupled nonlinear waves in the plasma
physics and BECs.
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